skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Siegel, Sammy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract For many pulsars, the scattering structures responsible for scintillation are typically dominated by a single, thin screen along the line of sight, which persists for years or decades. In recent years, an increasing number of doubly lensed events have been observed, where a secondary lens crosses the line of sight. This causes additional or distorted scintillation arcs over timescales ranging from days to months. In this work, we report such a transient event for pulsar B1737+13 and propose a possible lensing geometry including the distance to both lenses and the orientation of the main screen. Using phase retrieval techniques to separate the two lenses in the wavefield, we report the curvature and rate of motion of features associated with the secondary lens as it passed through the line of sight. By fitting the annual variation of the curvature, we report a possible distance and orientation for the main screen. The distance of the secondary lens is found by mapping the secondary feature onto the sky and tracking its position over time for different distances. We validate this method using B0834+06, for which the screen solutions are known through VLBI, and successfully recover the correct solution for the secondary feature. With the identified lensing geometry, we are able to estimate the size of the secondary lens, 1–3 au. Although this is an appropriate size for a structure that could cause an extreme scattering event, we do not have conclusive evidence for or against that possibility. 
    more » « less
    Free, publicly-accessible full text available August 29, 2026